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Abstract. We develop a variational approach for studying interfaces and other manifolds 
in a disordered quenched medium. The method may be applied to problems which range 
from directed polymers to the interface of an Ising model in a random magnetic field. We 
find that replica symmetry is spontaneously broken and the results of the Flory approxima- 
tion are recovered in a simple way. Corrections to this approximation may be computed 
in a systematic way. 

The behaviour of fluctuating manifolds in a random medium (quenched disorder) is 
very interesting and its understanding has many applications to different fields of 
physics (Nattermann and Rujan 1989, Halpin-Healey 1989); in spite of the serious 
efforts which have been devoted to the study of this problem the situation is still 
confused and conflicting results have been obtained (Efetov and Larkin 1977, Kogan 
and Wallace 1981, Fisher 1986, Brezin and Orland 1986). The aim of this letter is to 
show that a crucial ingredient, replica symmetry breaking (MCzard et a1 1987), was 
lacking in previous analysis and that, after its introduction, we recover reasonable 
results in a simple way. 

In a nutshell the problem may be formulated as follows. In the continuum limit 
the Hamiltonian is 

where w(x) is a vector with N components. The vector-valued function w(x) is defined 
on a d-dimensional space and represents the coordinates of a d-dimensional manifold 
in a ( N  + d )  dimensional space. The x’s parametrize the manifold which has coordinates 

The function 9 ( x , y )  (y being an N-dimensional vector) represents the effect of 
the disorder and is a quenched variable, which is usually supposed to be Gaussian 
distributed (the effects of having a non-Gaussian distribution for 7) are discussed in 
Zhang 1990). Different models may be obtained by choosing different forms for the 
correlation of the noise. In this letter we consider only the case where 

(x, w(x)). 

(2) 1 + ( A / 2 )  17(x , ,Y1)77(X2,y*)=(g /h)N ~(xl-xz)l~l-Yzl-A 
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g being the coupling constant; when A = N, the RHS of (2) becomes proportional to 
S ( y ,  - y 2 )  and the noise is short range (Medina et a1 1989, Halpin-Healey 1989). The 
models we consider are thus characterized by three parameters ( d ,  N and A ) ;  for some 
values of these parameters the model may be not defined in the continuum and a 
cut-off is present (we only consider the case where A 2 -2). 

In the low-temperature limit the problem reduces to finding the solution of the 
stochastic differential equation 

A w ( x )  = a77(x, Y) /aY lv -w( . x ) .  (3) 

It is crucial that, if there is more than one solution to (3), we should choose the 
one with lowest energy. 

The long-range behaviour of these models at low temperatures is characterized by 
a single exponent 6, which describes the growth of the transverse fluctuations of the 
manifold as function of the distance, i.e. 

( [~(x)--w(Y)12)~lx-Y/25 (4) 

for large Ix-yl. Using scaling invariance and Galilean invariance the values of the 
other exponents may be related to 5 (Kardar and Zhang 1987). 

There is a general agreement on the fact that, if the dimension d of the manifold 
is greater than 4, the exponent 6 (at least for not too large coupling g )  is zero and it 
becomes positive as soon as d is less than 4. There is no consensus on the values of 
5 in this last region. Indeed, in pertubation theory one finds the baffling result (Efetov 
and Larkin 1977, Brezin and Orland 1986) 

l=  (4- d ) / 2  (5) 

independent of N or I?.  
Similar results can be obtained by using supersymmetric arguments (Parisi and 

Sourlas 1979, Kogan and Wallace 1981). 
However both pertubation theory and supersymmetry (Parisi 1984 and 1987) 

implicitly assume the existence of only one solution to (3). The presence of many 
solutions to this equation has been recognized to be the crucial ingredient which leads 
to the failure of ( 5 )  (Villain and Semeria 1983, Engel 1985), as can be explicitly seen 
in a zero-dimensional model (Schulz et a1 1988). 

Simple arguments based on naive dimensional counting lead to the Flory-type 
result (Villain 1982, Grinstein and Ma 1983): 

l =  (4- d)/(4+A). ( 6 )  

Although equation (6) is not always the exact result, it certainly makes more sense 
than equation ( 5 )  (at least l depends on the form of the noise). Unfortunately we do 
not at present, have a satisfactory derivation of (6) for any value of the parameters; 
indeed the proof based on the so-called functional renormalization group (Fisher 1986) 
is technically incorrect (Brezin and Orland 1986) and it does not take into account 
the crucial physical point, i.e. the existence of many solutions of (3). 

It seems natural to suppose that the interface has many equilibrium points (Villain 
and Semeria 1983); if this happens, standard perturbation theory is inadequate to 
describe fluctuations between free energy minima which are far from each other in 
phase space. The correct formalism to describe the system consists of using the replica 
approach with broken replica symmetry. This proposal seems to be quite natural as 
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far as explicit computations for d = 1 (directed polymers) strongly point towards the 
spontaneous breaking of the replica symmetry (Derrida and Spohn 1988, Parisi 1990b 
and MCzard 1990). 

In this letter we will use a variational approach (in the spirit of Shakhnovich and 
Gutin 1989), which should be exact in the limit of large N. The solution with broken 
replica symmetry can be found explicitly and it leads to (6). 

The first step consists in using the replica formalism and in integrating over the 
Gaussian noise 77. We introduce n copies of the N-dimensional vector w, which now 
cames two indices: w z ,  (Y = 1, N, a = 1, n. The expectation value of the partition 
function to the nth power can be obtained by using the following Hamiltonian: 

Apart form the simple case where A = -2 (Parisi 1990a), the model is not explicitly 
soluble and the interaction is not polynomial. It is interesting to note that the model 
is invariant under the group O( N) (i.e. rotations in physical space), under the S ,  group 
(i.e. the permutation group of n replicas) and under the group of translations. The 
actual symmetry group is larger, but we do not need it. As usual, eventually we have 
to consider the limit n going to zero, which gives a distinctive flavour to the replica 
approach (MCzard er a1 1987). 

As usual a mean-field approach may be constructed by considering a class of 
Hamiltonians H,, whose partition function is computable as function of the parameters 
Q. The best Hamiltonian, which shall be the starting point in the mean-field approach, 
can be found as the solution of the variational problem for the free energy: 

aF/aQ = o F [  Ql = (HR)Q - s[ H Q ]  (8) 

where ( ), denotes the expectation value with respect to the Hamiltonian H, and 
S [ H , ]  is the entropy of that Hamiltonian. 

The simplest choice for HQ is a quadratic functional of the field w, which, without 
loss of generality, we can assume to be of the form: 

HQ= ddX c c ; [ a , o z ( x ) l 2 +  a = l . n ; b = l , n  Q a , b w z ( X ) w ; ( X ) }  

The matrix Q plays the role of a variational parameter; translational 

a = l , N  {’ a=l.n; ,=l,d 

implies that 

C Q0.b = 0. 
a 

If more general quadratic forms of HQ were considered, the variational principle 

In momentum space the correlation function of two 0 ’ s  is given by 
always would produce a result of the form given in (9). 

G a , b ( k )  = 0 ) l a . b .  (11) 
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After a simple computation one finds that the free energy is proportional to 

Facons tan t+  ddk{-k2 Tr[G(k)]+Tr[ln G(k)]  i 
where we have set /3 = 1 for simplicity and c = N - * / * r ( i N - ~ h ) / T ( i N ) .  

The mean-field equations (8)  can be explicitly written as 

where A = 2 y - 2. 
The reader familiar with the diagrammatic approach will recognize in (13)  the 

usual equation for the self-energy of a bosonic field, where tadpole graphs are con- 
sidered in a self-consistent way. This equation is sometimes called the gap equation 
and the approach is denoted as the Hartree-Fock approximation. Usual diagrammatical 
(or functional) arguments tell us that, in the absence of loopholes due to infrared or 
ultraviolet divergences, (13)  is exact when N goes to infinity and it can be used as the 
starting point of an expansion in powers of 1/ N. 

The rest of this letter will be devoted to finding the solution of (13) ,  assuming a 
hierarchical replica symmetry breaking scheme. We will assume that the matrix Q is 
given by the canonical form (MCzard e? al 1987), as functional of the function q(x),  
plus a term on the diagonal 4, where q(x)  is defined in the same way as in spin glasses. 
The constraint of (10) translates into 

i =  dxq(x) .  (14) 1 
If we try to solve (13)  we face the problem of computing the propagator Ga,*(k) 

in (11).  This is again an ultrametric matrix which can be computed using techniques 
similar to MBzard and Parisi (1985).  To the set (4, q(x))  we associate the function 
n ( x ) ,  defined as 

Then the function g(x, k) and the diagonal term g’(k) corresponding to the matrix 
Ga,b( k) are given by 

Equation (13) thus becomes, at small x, 

where d = 4 - 2~ and c( d )  = ?rd/2r( 1 - d / 2 ) .  
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Equation (17) is very similar to the one found by Shakhnovich and Gutin 1989 in 

If we differentiate twice with respect to x we find (neglecting multiplicative con- 
a different context (self-interacting random heteropolymers). 

stants), the simple equation 

( x  - R ( x ) ” q ’ ( x )  = 0 S = l - & y / ( l + y ) .  (18) 

Let us assume that for x near to zero q ’ ( x )  is different from zero. We find that for 
small x,  q ( x )  behaves as x(’”)-’  and q(0 )  = 0. The reasonable range for 6 is the interval 
0- 1 .  A value of 6 greater that one should be interpreted as the absence of replica 
symmetry breaking, while a value of S less then zero implies that the function q ( x )  is 
identically zero for x less then a critical value, as can be shown by a detailed analysis. 
Replica symmetry is therefore broken in the region where the dimension is less than 
4 and A is greater than -2. 

We can now compute the propagator g( k )  - g ( x ,  k )  where x is the distance between 
a and b in replica space; we find that the singular part for small x is given by 

which behaves as 

The singular part of the diagonal part of the correlation can be obtained from (16). 
We thus find that g ( k )  behaves for small k as k-2(’ts) . On the other hand the 

scaling law (3) implies that g ( k )  behaves, for small k, as k - d - i ;  by comparing the two 
equations we find that 

I =  & / ( I  + Y) for l > & y / ( l + y )  

I = & - l  for 1 < ~ y / ( l + y ) .  

Equation (21) is the Flory result (Halpin-Healey 1989), as can be easily checked. 
The breaking of replica symmetry in a hierarchical fashion leads naturally to 

non-trivial critical exponents. The behaviour of the correlation function at large distance 
is related to the behaviour of the function q ( x )  at small x. The physical implications 
of replica symmetry breaking will be discussed in more detail in MCzard and Parisi 
1990; here we only note that the breaking of replica symmetry probably has deep 
consequences on the dynamics of the system and it is likely to be at the origin of the 
very slow approach to equilibrium in these systems. 

The very nature of the variational approximation we have used strongly suggests 
that (21) cannot be exact for all values of N, while it is likely to be correct in the limit 
of infinite N, at least for y in an appropriate range. The construction of an 1/N 
expansion seems to be feasible, although it may be quite involved. It is quite possible 
that the E expansion is simpler. In any case the explicit computation of the first 
corrections to the mean-field approximation should be very instructive. 

The authors are grateful for the hospitality of the Department of Physics of the 
University of Heraclion, where part of this work was done. 



L1234 Letter to the Editor 

References 

Brezin E and Orland H 1986 unpublished 
Derrida B and Spohn H 1988 J. Stat. Phys. 51 817 
Efetov K B and Larkin A 1977 Zh. Eksp. Teor. Fir. 72 2350 
Engel A 1985 J. Physique Lett. 46 409 
Fisher D S 1986 Phys. Rev. Lett. 56 1964 
Grinstein G and Ma S K 1983 Phys. Rev. B 28 2588 
Halpin-Healey T 1989 Phys. Rev. Left. 62 442 
Kardar M and Zhang Y - C  1987 Phys. Rev. Lett. 58 2087 
Kogan H S and Wallace D J 1981 J. Phys. A :  Math. Gen. 14 527 
Medina E, Hwa T, Kardar M and Zhang Y - C  1989 Phys. Rev. A 39 3053 
Mtzard M 1990 J. Physique 51 1831 
Mdzard M and Parisi G 1985 J. Physique Left. 45 L707 
- 1990 in preparation 
MCzard M, Parisi G and Virasoro M 1987 Spin Glass Theory and Beyond (Singapore: World Scientific) 
Nattermann T and Rujan P 1989 J. Mod. Phys. B 3 1597 
Parisi G 1984 Les Houches 1982, Session XXXIX ed J-B Zuber and R Stora (Amsterdam: North-Holland) 
- 1987 Quantum Field Theory and Quantum Statistics, Essays in Honour of the Sixtieth Birthday of E S 

- 1990a Rend. Acad. Naz. Linceli (in press) 
- 1990b J. Physique 51 1595 
Parisi G and Sourlas N 1979 Phys. Rev. Lett. 43 744 
Shakhnobich E I and Gutin A M 1989 J. Phys. A :  Math. Gen. 22 1647 
Schulz U, Villain J, Brezin E and Orland H 1988 J. Stat. Phys. 51 1 
Villain J 1982 J. Physique Lett. 43 808 
Villain J and Semeria B 1983 J. Physique Lett. 44 889 
Zhang Y - C  1990 Non- Universal Roughening of Kinetic Self-Afine Interfaces Preprint Rome 

Fradkin ed I A Batalin, C J Isham and G A Vilkovisky (Bristol: Hilger) 


